skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Taji, Behrouz"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Hacon, Christopher; Xu, Chenyang (Ed.)
  2. Abstract We develop a Hodge theoretic invariant for families of projective manifolds that measures the potential failure of an Arakelov-type inequality in higher dimensions, one that naturally generalizes the classical Arakelov inequality over regular quasi-projective curves.We show that, for families of manifolds with ample canonical bundle, this invariant is uniformly bounded.As a consequence, we establish that such families over a base of arbitrary dimension satisfy the aforementioned Arakelov inequality, answering a question of Viehweg. 
    more » « less
  3. Abstract We show that, for any fixed weight, there is a natural system of Hodge sheaves, whose Higgs field has no poles, arising from a flat projective family of varieties parametrized by a regular complex base scheme, extending the analogous classical result for smooth projective families due to Griffiths. As an application, based on positivity of direct image sheaves, we establish a criterion for base spaces of rational Gorenstein families to be of general type. A key component of our arguments is centered around the construction of derived categorical objects generalizing relative logarithmic forms for smooth maps and their functorial properties. 
    more » « less